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Abstract—Spatial correlation among densely packed particles can substantially change their
single-scattering properties, thus making questionable the applicability of the independent
scattering approximation in calculations of light scattering by planetary regoliths. The same
problem arises in geophysics in light scattering computations for snow, frosts, and bare soil.
In this paper, we use a dense-medium light-scattering theory based on the introduction of the
static structure factor to calculate asymmetry parameters of the phase function for densely
packed particles with real refractive indices 1.31 and 1.66, approximating water ice and soil
particles, respectively, and imaginary refractive indices 0, 0.01, and 0.3. For sparsely
distributed, independently scattering grains, the calculated asymmetry parameters are always
positive and always larger than those for densely packed particles. For densely packed grains,
the asymmetry parameters may be negative but only for radius-to-wavelength ratios from
about 0.1 to about 0.4. With decreasing particle size, the calculated asymmetry parameters
tend to zero independently of the compaction state. In the geometrical optics regime, the
asymmetry parameters for densely packed scatterers are positive and very close to those for
independently scattering grains. These results may have important implications for remote
sensing of the Earth and solid planetary surfaces. In particular, it is demonstrated that negative
asymmetry parameters derived with some approximate multiple-scattering theories may be
physically irrelevant and can be the result of using an inaccurate bidirectional reflection
function combined with the ill-conditionality of the inverse scattering problem.

1. INTRODUCTION

It is usually assumed that the surfaces of most atmosphereless bodies in the solar system are
particulate media composed of densely packed regolithic grains.' In such densely packed media,
spatial correlation among particles can result in substantial changes of their single-scattering
properties (such as optical cross sections and phase function), thus making questionable the
applicability of the independent scattering approximation*’ in calculations of light scattering by
planetary regoliths. The same problem arises in geophysical calculations of light scattering by snow,
frosts, and bare soil.*'® Therefore, rigorous dense-medium theories must be used to examine the
effects of packing density on light scattering.

An especially interesting quantitative characteristic of scattering particles is the asymmetry
parameter of the phase function. Indeed, unlike the extinction and scattering cross sections, which
may also be changed by effects of packing density, the asymmetry parameter can change not only
its absolute value, but also its sign. It is well known that even small changes in the absolute value
of the asymmetry parameter, to say nothing of the reversal of its sign, can significantly affect the
thermal regime of the scattering medium.'"'? Therefore, accurate calculations of the asymmetry
parameter are especially important in computing the albedo of snow and ice®'® and studies of the
solid-state greenhouse effect in icy regoliths.!* Also, some approximate bidirectional reflection
functions, when used to interpret photometric observations of the Earth and solid planetary
surfaces, systematically give negative asymmetry parameters for regolithic and soil particles.'*!4
Since asymmetry parameters for independently scattering dielectric grains are always nonnegative,
it is important to verify whether those approximate reflection functions were accurate enough to
give physically relevant results.
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In this paper, we study how the asymmetry parameter of the phase function is changed depending
on the compaction state of scattering particles. In our calculations, we use a dense-medium
light-scattering theory based on introducing the so-called static structure factor.' In the following
section, we briefly recapitulate the main formulas of this theory and present and analyze theoretical
calculations of the asymmetry parameter for a representative selection of particle refractive indices,
radius-to-wavelength ratios, and compaction states. In Section 3, we discuss implications of our
calculations for remote sensing of the Earth and solid planetary surfaces. The results of the paper
are summarized in the concluding section.

2. CALCULATIONS

For sparsely distributed, independently scattering particles, the asymmetry parameter of the
phase function g is defined as the mean cosine of the scattering angle:**

1
g =<cosf)= 1/2j d(cos 8 )p (0 )cos 6, )
-1
where 6 is the scattering angle and p(0) is the single-scattering particle phase function.
Theoretically, the asymmetry parameter can vary from —1 to + 1 and is negative for backscattering
grains, positive for forward-scattering grains, and zero for isotropic scatterers.*’ The phase function
is given by

4n dC,,
PO =% @
where dC,,/dQ is the differential scattering cross section® and
dcC
= Q sca

is the total scattering cross section.

Densely packed regolithic and soil particles are not independent scatterers. Therefore, the
concept of the single-scattering phase function cannot be used in the same sense as it is used in
computations of light scattering by cloud and aerosol particles. However, the concept of the
single-scattering phase function can still be used with some modification to calculate the intensity
of light singly scattered by a layer of densely packed grains.'>™'® Specifically, the angular distribution
of the first-order-scattering contribution to the reflected intensity is given by that of the
conventional radiative transfer theory provided that the differential scattering cross section is equal
to the product of the independent-scattering differential cross section and so-called static structure
factor S(6). Thus, instead of Egs. (1)-(3), we have for densely packed grains
47 dC,

c. a0 S(0), )

p0)=

dC,
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and
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Note that the theory based on the introduction of the static structure factor has a rather strong
physical background and is based, in the last analysis, on solving Maxwell’s equations for
calculating light scattering and on statistical mechanics for describing the statistics of mutual
positions of densely packed grains. In addition, Wolf et al'® and Saulnier et al?® have found that this
theory is in good quantitative agreement with results of their controlled laboratory experiments.
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Thus to calculate the single-scattering phase function for densely packed particles, we must first
compute the static structure factor. In general, this quantity depends on scattering angle and
particle size distribution and shape. Since the problem of computing the static
structure factor for arbitrary particle size distribution and shape is extremely difficult, we have to
make two usual approximations."” Specifically, we assume scattering particles to be nearly
spherically shaped and nearly monodisperse (the range of sizes is narrow compared with the mean
grains size). It has been derived that for hard, impenetrable, monodisperse spheres of a radius r,,
the structure factor in the Percus—Yevick approximation is given by'®

1

SO =Ty

(7

where
p = [4n sin(0/2)]/4, (3)

n is the number density of scattering particles, 4 is the wavelength of light, and C (p) is given by

C(p)=24£[%écosu —%ﬂsinu —Wcosu +i—€

+2l;ifsinu+%44—f(cosu—l)],p¢0 )

and?
C(0)= —24£<%+—§+%>. (10)

In Egs. (9) and (10),
u =2pr,, (11
1+ 2f)
1 2)?

B=—6r L (13)
o =af/2, (14)

where
f=§7m"o3 (15)

is the filling factor (i.e., the fraction of a volume occupied by the particles). Note that for sparsely
distributed grains (n = 0), the structure factor is identically equal to unity.

In Fig. 1 the static structure factor is shown as a function of the parameter u for six values of
the filling factor. It is seen that increasing packing density results in an angular redistribution of
the scattered intensity. The influence of packing density is especially significant at u <5, i.e., at
scattering angles 6 <0.44/r,. It is well known that the half-width at half-maximum of the
forward-scattering cone due to diffraction of light on an isolated particle is given by 0 ~ 0.254/r,.
Thus, the main effect of increasing packing density is to suppress the forward-scattering diffraction
component of the phase function. It should be noted that in the approximate multiple-scattering
theories by Hapke and Lumme and Bowell,’ it is a priori assumed that, for particles in intimate
contact, the phase function does not include the diffraction term. Figure 1 enables one to quantify
the validity of this assumption and shows that it becomes reasonably accurate only for filling factors
exceeding roughly 0.2.
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Fig. 1. Structure factor S vs parameter u for filling factors f =0 (solid line), 0.1 (dotted line), 0.2
(short-dashed line), 0.3 (dot-dashed line), 0.4 (triple-dot-dashed line), and 0.5 (long-dashed line).

In Figs. 2-7, we present results of numerical computations of the asymmetry parameter for two
values of the real part and three values of the imaginary part of the refractive index and six values
of the filling factor. Note that the real refractive index 1.31 is close to that of water ice while the
value 1.66 approximates the real refractive index of soil particles?? and the mineral enstatite at
visible wavelengths. Asymmetry parameters are plotted vs a dimensionless ratio y = r,/A. In these
computations, we used the Mie scattering theory*>** to calculate the differential scattering cross
section for independently scattering spherical particles of a given size and refractive index and then
employed a Gaussian quadrature formula to evaluate the integrals in Eq. (6) numerically for
different values of the filling factor f. Note that to obtain convergent results for large particles and
large filling factors, the number of Gaussian division points should be of order of several thousand.
It is well known that monodisperse Mie quantities as a function of size parameter contain a
high-frequency ripple which is usually suppressed in practice because, in nature, there is always a
dispersion of grain sizes.*** Therefore, following Wiscombe and Warren,” we reduced the ripple
by averaging the asymmetry parameter over a range of sizes which was small relative to the mean
grain size.

It is seen from Figs. 2-7 that for sparsely distributed, independently scattering spheres (f = 0),
the calculated asymmetry parameters are always positive and always larger than those for densely
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Fig. 2. Asymmetry parameters of the phase function vs radius-to-wavelength ratio y for spherical particles

with refractive index 1.31 and filling factors f =0 (solid line), 0.1 (dotted line), 0.2 (short-dashed line),
0.3 (dot-dashed line), 0.4 (triple-dot-dashed line), and 0.5 (long-dashed line).
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Fig. 3. As in Fig. 2, for refractive index 1.31 + 0.01i.

packed grains. With decreasing particle size, the asymmetry parameters tend to zero independently
of the compaction state. For particles much larger than the wavelength, the asymmetry parameters
for densely packed particles are positive and very close to those for independently scattering spheres
despite the fact that the effects of high packing density strongly suppress the forward-scattering
diffraction peak (Fig. 1). Thus in the geometrical optics limit, the approximation of independent
scattering gives reasonably good accuracy and may be used in practical computations for densely
packed grains.”'*?52 The most interesting result of our calculations is that, unlike independently
scattering particles, the asymmetry parameter for densely packed grains may be negative, but,
irrespective of refractive index, only for radius-to-wavelength ratios in the range 0.1 <y <0.4.

Although calculations displayed in Figs. 2-7 have been performed for spherical particles, our
observations summarized in the preceding paragraph are, apparently, valid for nonspherical
particles and particles with rough surfaces as well. Indeed, Figs. 8 and 9 show asymmetry
parameters for randomly oriented oblate spheroids and Chebyshev particles, respectively, rigor-
ously calculated using the T-matrix method.””? The aspect ratio of the spheroids is 1.5, thus
demonstrating effects of a major departure of particle shape from sphericity. The shape of the
rotationally symmetric Chebyshev particles in the spherical coordinate system is governed by the
equation’

7 (8, ¢) = Ro[1 +0.05 cos(89)], 8 €[0, n], ¢ € [0, 2] (16)
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Fig. 4. As in Fig. 2, for refractive index 1.31 + 0.3i.
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Fig. 5. As in Fig. 2, for refractive index 1.66.

and is the result of continuously deforming a sphere by means of the Chebyshev polynomial of
degree 8, thus being ideally suited to model small-scale surface roughness of nearly-spherically
shaped particles. Because of numerical limitations, calculations in Figs. 8 and 9 are shown for
radius-to-wavelength ratios y not exceeding 10. However, Figs. 2-7 demonstrate that asymmetry
parameters are most sensitive to y in the region 0.01 <y < 10, and comparison of Figs. 3, 8, and
9 shows that in this region the effects of particle nonsphericity and surface roughness are small.

As was explained above, the dense-medium single-scattering phase function, as defined by Eq.
(4), describes the first-order-scattering contribution to the reflected intensity and, as such, has a
definite physical meaning. Moreover, for highly absorbing particles, for which the higher-order-
scattering contribution to the reflected light is negligibly small, it becomes a directly observable
quantity. Also, for nonabsorbing or slightly absorbing particles the dense-medium asymmetry
parameter given by Eq. (6) specifies the photon transport mean free path and, therefore, can be
determined from measurements of the angular width of the backscattering intensity peak and
polarization opposition effect caused by weak localization of photons in discrete random
media.’”"“‘”

Of course, an interesting question is whether the classical independent-scattering phase function
or the modified dense-medium phase function given by Eq. (4) can be used in the radiative transfer
equation to calculate the multiple-scattering contribution to the reflected intensity for densely
packed particles. It has been shown in Ref. 34 that the intensity (or, more generally, the Stokes
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Fig. 6. As in Fig. 2, for refractive index 1.66 + 0.01i.
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Fig. 7. As in Fig. 2, for refractive index 1.66 + 0.3i.

vector) of light multiply scattered by densely packed particles with sizes much smaller than the
wavelength (i.e., Rayleigh scatterers) is a solution of an equation which has the same form as the
classical radiative transfer equation and contains exactly the same independent-scattering phase
function (matrix), but the extinction coefficient and single-scattering albedo are modified. For a
semi-infinite nonabsorbing (or weakly absorbing) medium, this modified radiative transfer equation
gives exactly the same result as the classical radiative transfer equation. Therefore, the use of the
classical radiative transfer equation is justified if the densely packed scattering particles are
nonabsorbing or slightly absorbing and very small compared with the wavelength. Also, by
comparing theoretical radiative transfer calculations with results of controlled laboratory exper-
iments,'”* it has recently been demonstrated®® that the classical radiative transfer equation
containing the independent-scattering phase function (matrix) gives good quantitative results for
densely packed nonabsorbing particles with sizes comparable to and slightly larger than the
wavelength. The filling factor in those experiments was as large as 0.1, while it is usually believed
that the classical radiative transfer equation is valid only for filling factors smaller than roughly
0.001. Similar comparisons of radiative transfer computations with results of his controlled
laboratory experiments for big transparent particles have been performed by Goguen.*’ It follows
from Fig. 1 that the effect of packing density on the phase function at side- and backscattering
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Fig. 8. Asymmetry parameters of the phase function vs the ratio of the equal-volume-sphere radius to

the wavelength y for randomly oriented oblate spheroids with refractive index 1.31 + 0.01;, aspect ratio

1.5, and filling factors f =0 (solid line), 0.1 (dotted line), 0.2 (short-dashed line), 0.3 (dot-dashed line),
0.4 (triple-dot-dashed line), and 0.5 (long-dashed line).
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Fig. 9. As in Fig. 8, for randomly oriented Chebyshev particles with shape given by Eq. (16).

angles becomes negligibly small with increasing radius-to-wavelength ratio. Therefore, we
may expect that the classical radiative transfer equation can give good results for big nonabsorbing
or moderately absorbing particles. For example, the standard radiative transfer theory was
used to compute the albedo of snow and frosts”'® and to estimate the refractive index of soil
particles.”? Also, in Ref. 38 a radiative transfer equation containing the classical independent-
scattering phase matrix was used to compute millimeter-wave radar scattering from snow, in
which case particles had sizes comparable to the wavelength of radiation. If particles are much
larger than the wavelength and strongly absorbing, Monte Carlo ray-tracing modeling” may give
good results.

3. IMPLICATIONS FOR REMOTE SENSING OF PLANETARY REGOLITHS
AND SOIL PARTICLES

The Lumme and Bowel theory of light scattering by planetary regoliths®* implies a forward-

scattering phase function of regolithic grains with a positive asymmetry parameter g and provides
a reasonably good fit to observational data.> On the other hand, the Hapke theory,* when applied
to the interpretation of photometric observations of atmosphereless planetary surfaces, including
high albedo icy or ice-covered surfaces, gives an equally good fit but with systematically negative
values of the asymmetry parameter of the single-scattering phase function (e.g., Refs. 1, 3, 42-46).
This means that, when described by the Hapke model, the regolithic grains that form the particulate
surfaces are backscattering. Similar negative asymmetry parameters have been derived applying the
Hapke theory to soil particles.'* It is well known that independently scattering ice and soil particles
have positive and usually large asymmetry parameters and are (strongly) forward scattering (Refs.
5,7,23,29,47-53 and Figs. 2-9). Therefore, to explain the negative values of the asymmetry
parameter as inferred with the Hapke theory, it is usually hypothesized that particles become
backscattering when they are densely packed.” As follows from our calculations, this means that
regolithic grains, regardless of their chemical composition and wavelength, must have radii in the
range 0.14 < ry < 0.44. This seems absolutely unrealistic and contradicts the results of the study
by Hapke and Wells* who applied the Hapke theory to interpret laboratory photometric
measurements of particulate surfaces and obtained negative asymmetry parameters for glass
particles much larger than the wavelength.

Another explanation of the negative asymmetry parameters obtained with the Hapke theory is
that individual regolithic particles are in fact aggregates or chains of smaller grains and are
multiple-scattering objects themselves. As a result of multiple scattering, these individual aggregates
or chains scatter a significant fraction of light in the backscattering direction and thus cause a
negative asymmetry parameter.“*¢ However, if such composite particles are densely packed to
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form a regolithic surface, the individual aggregates or chains become indistinguishable (there is no
way to determine whether a grain is the last element of the previous chain or the first element of
the next chain), and the light incident on the surface will “see” the scattering medium as a single
superaggregate or superchain composed of the smaller grains. Thus, it is the smaller grains rather
than the indistinguishable “individual” aggregates or chains that play the role of single scatterers.
Therefore, they must be backscattering in themselves if the asymmetry parameters, as inferred with
the Hapke theory, were indeed negative. This suggests once again that the smaller grains have sizes
in the range 0.14 < y, < 0.44 irrespective of their composition and wavelength, which does not seem
realistic.

One more explanation is that “individual” regolithic particles are filled with internal scatterers
in the form of cracks, voids, and/or foreign inclusions and, as such, are multiple-scattering
and, therefore, backscattering objects.’® However, in densely packed regoliths the distance between
internal scatterers belonging to the same “individual” particle is of the same order as or even
greater than the distance between internal scatterers belonging to different adjacent “‘individual”
regolithic particles. Therefore, multiple scattering of light by inclusions belonging to different
“individual” particles can be stronger than that by inclusions belonging to the same ‘“‘individual”
particle. In other words, densely packed ““individual” particles filled with foreign inclusions are
no longer individual, separate multiple-scattering objects. It is the whole regolithic layer filled
with internal scatterers which is the multiple-scattering object. Therefore, the Hapke single-
scattering albedo and asymmetry parameter, which by definition are single-scattering quantities,
must be associated with the primary single-scattering units in the form of cracks, voids,
and/or foreign inclusions, which are forward-scattering. Another difficulty with this explanation
is that it requires an unrealistically complicated internal structure for regolithic and soil
particles as well as for glass particles used in laboratory experiments to validate the Hapke
theory.*

There is, however, another simple explanation of negative asymmetry parameters obtained with
the Hapke theory which is based on the following two facts. First, several rather crude
approximations have been made in the derivation of the Hapke bidirectional reflection function.*!
For example, regardless of the actual phase function of regolithic particles, the contribution of
photons scattered more than once is approximated in the Hapke theory by that of isotropic
scatterers. As was shown by Goguen,” this approximation can significantly underestimate the
actual contribution of multiply scattered photons for real phase functions. Also, the contribution
of the first-order scattering is usually approximated by a single-peaked Henyey-Greenstein phase
function or a few-term expansion in Legendre polynomials, which is too crude an approximation
for most real phase functions. Second, it is well known that determination of the asymmetry
parameter from measurements of the reflected light is an ill-conditioned inverse problem.’’*
This means that under certain conditions the reflected intensity can depend on the asymmetry
parameter of the phase function rather weakly. As a result, experimental noise and/or approxi-
mations like those mentioned above can easily result in absolutely wrong values of the asymmetry
parameter.”

An example demonstrating the relevance of this latter explanation comes from Hapke and
Wells.* Their Fig. 9 (reproduced then in Ref. 60) shows that, by using the Hapke bidirectional
reflection function, they were able to obtain almost perfect fit to two relative brightness profiles
of the Venus atmosphere, which was considered by the authors a corroboration of the adequacy
of the model. However, their fit was obtained with an asymmetry parameter of the phase function
equal to zero, whereas it is well known that Venus clouds are composed of micrometer-sized
spherical droplets having strongly forward scattering phase functions with asymmetry parameters
of about 0.7-0.8 in the visible.5"%? Thus, although the fit of the Hapke model to the observations
was almost perfect, the inferred asymmetry parameter was absolutely wrong.

To further demonstrate our explanation of the origin of negative asymmetry parameters as
inferred with the Hapke model, we rigorously calculated the bidirectional reflection function for
a semi-infinite layer composed of sparsely distributed, strongly forward-scattering ice particles and
then used the Hapke bidirectional reflection function to reconstruct the particle asymmetry
parameter. To specify the single-scattering properties of the particles, we used a single-scattering
albedo w =1 and a double-peaked Henyey-Greenstein phase function
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1-g}? 1—-g3
p(o)_F(l — 2g, cos 0 +gf)3/2+(1 _F)(l —2g,cos 0 + g3)*? {17

with g, =0.85, g, = —0.8, and F =0.98, which reasonably accurately approximates the phase
function measured in laboratory conditions for ice crystals with sizes of a few tens of micrometers.®
Since we assumed the particles to be sparsely distributed and, thus, independently scattering, we
used in our calculations the standard radiative transfer theory. Specifically, the bidirectional
reflection function R was calculated by solving numerically the Ambartsumian nonlinear integral
equation for R* as described by Dlugach and Yanovitskij.* The calculations were fitted with the
Hapke bidirectional reflection function"*

@y 1 _ .

Ry=— [Pu(0) + H (po, ®u)H (p, @y) — 1), (18)
4 p+p

where we have omitted the shadowing term as negligibly small for sparsely distributed scatterers.
In Eq. (18), @y is model single-scattering albedo, u, and p are cosines of the angles of light incidence
and reflection, respectively, as measured from the normal to the surface, 6 is the scattering angle
(angle between incident and reflected light), the function

1+ 2x
14 2x (1 — ag)"?

H (x,@y) = 19
approximates the Chandrasekhar H-function for isotropic scattering, and the function py describes
the contribution of the first-order scattering and is usually chosen to be a single-peaked
Henyey-Greenstein phase function characterized by the model asymmetry parameter gy:
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Fig. 10. Contour plot of the relative error ¢ as a function of the phase angle and Hapke model asymmetry
parameter gy, for the case of normal incidence and oblique reflection of light and &y, = 1 (see text). Owing
to reciprocity, this figure is also relevant to the case of oblique incidence and normal reflection of light.
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Thus, as mentioned above, in the Hapke model the contribution of photons scattered more than
once is approximated by that of isotropic scatterers. The fit of the Hapke reflection function Ry
to the rigorously calculated reflection function R is characterized by the relative error

_R—Ry

H

x 100%. (21

€

In Fig. 10, the error ¢ is shown as a function of the reflection angle (or, equivalently, the phase
angle which is equal to the angle between the direction of light reflection and the direction opposite
to the direction of light incidence, i.e., 180° — ) and the model asymmetry parameter gy for the
case of normal incidence of light and model single-scattering albedo @y = 1. Note that owing to
reciprocity, this figure is also relevant to the case of oblique illumination and normal reflection.
It is seen that none of the model asymmetry parameters g, from the interval [—0.9, 0.9] provide
an acceptable fit. However, as shown in Fig. 11, an excellent fit for angles of reflection from 0°
up to 80° is provided by the model single-scattering albedo @y = 0.996 and asymmetry parameter
gy = —0.4. (Figure 12 shows that further decrease of the model single scattering albedo makes the
fit worse.) Thus, the actual, rigorously computed reflection function for strongly forward scattering
particles with the asymmetry parameter of about 0.82 is well represented by the Hapke bidirectional
reflection function with the model asymmetry parameter gy = —0.4 corresponding to moderately
backscattering particles. This result can easily be understood. Indeed, since the Hapke term
describing the contribution of multiply scattered photons can substantially underestimate the real
multiple-scattering contribution in the backward direction,’’ this underestimation must be compen-
sated for by artificially enhancing the single-scattering phase function in the backscattering
direction and, therefore, decreasing the asymmetry parameter. The fact that the retrieved model
single-scattering albedo @y is smaller than the actual one results in an even bigger error in the
retrieved asymmetry parameter gy. In addition, although the rigorous radiative transfer compu-
tations have been performed for a semi-infinite layer with a flat boundary, the residual differences
at phase angles greater than 80° (Fig. 11), resulting from the use of the Hapke approximate
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Fig. 11. As in Fig. 10, but for @y = 0.996.
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Fig. 12. As in Fig. 10, for &y = 0.99.

reflection function, could, apparently, be misinterpreted by artificially introducing a nonzero
macroscopic surface roughness.’®

Figures 13-15 show analogous computations for the mirror geometry of light reflection, when
both incident and reflected beams lie in a plane perpendicular to the surface and the phase angle
is equal to twice the angle of incidence and varies from 0° (normal incidence and normal reflection)
to 180° (grazing incidence and grazing reflection). We see that in the case of conservative scattering
(@4 = 1, Fig. 13) none of the Hapke asymmetry parameters can provide an acceptable fit for the
entire range of phase angles, and that artificially introducing absorption (Figs. 14 and 15) only
increases the errors. The errors are especially big at the forward-scattering direction (phase angles
larger than approximately 120°), which is not surprising. Indeed, the actual contribution of n times
forward-scattered photons is proportional to the nth power of the forward-scattering value of the
phase function, whereas in the Hapke reflection function it is proportional only to the first power
(higher-order scattering is assumed to be isotropic). As a result, the Hapke reflection function
grossly underestimates the forward-reflected intensity. Only at exactly the grazing incidence and
reflection (phase angle = 180°), when only the single-scattered photons contribute to the reflected
intensity,*® the errors are small for gy ~ 0.85.

It is well known that it is multiple scattering which makes clouds backscattering despite
forward-scattering phase functions of cloud particles.® It follows from our computations that (1)
the same is true for regolithic, soil, and snow surfaces and (2) it is the approximate Hapke reflection
function which makes the model phase function backscattering. The latter conclusion is well
illustrated by laboratory measurements and model computations by Hapke and Wells.* It is known
from the radiative transfer theory that decreasing absorption and, thus, increasing the single-
scattering albedo drastically increases the amount of multiple scattering (the contribution of the
nth-order scattering is proportional to the nth power of the single-scattering albedo®) and,
therefore, reflectivity. Such a dramatic increase of reflectivity with decreasing absorption is indeed
seen in Figs. 3-5 in Ref. 54. However, because of the inability of the Hapke isotropic
multiple-scattering term to adequately represent the real multiple-scattering contribution, this
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Fig. 13. Contour plot of the relative error ¢ as a function of the phase angle and Hapke model asymmetry
parameter gy for the case of the mirror geometry of light reflection and @, = 1 (see text).

increase of reflectivity is misinterpreted in terms of steeply enhancing the single-scattering phase
function in the backscattering direction. This makes the phase function for almost nonabsorbing,
transparent glass particles backscattering (model asymmetry parameter gy = —b/3 = —0.24 for
37-74 um particles), which does not seem physically realistic.

4. CONCLUDING REMARKS

In this paper, we have used a dense-medium light-scattering theory based on introducing the
static structure factor to compute asymmetry parameters of the single-scattering phase function for
densely packed particles. Our calculations show that the effects of packing density do not change
the asymmetry parameter significantly for particles much smaller and much larger than the
wavelength of light. However, asymmetry parameters for particles with radius-to-wavelength ratios
from roughly 0.1 to roughly 1 can be changed substantially and may even become negative. By
definition, the dense-medium single-scattering phase function accurately represents only the
first-order-scattering contribution to the intensity reflected by a scattering layer. However, it
apparently can be used in the radiative transfer equation to compute the full reflected intensity
for nonabsorbing and moderately absorbing particles. For strongly absorbing particles with sizes
much greater than the wavelength, Monte Carlo ray-tracing techniques may give good results.

Since our computations are based on a solid physical background, they can be used to examine
the physical relevance of approximate reflection functions pretending to adequately describe
multiple light scattering. We have shown that the negative asymmetry parameters obtained with
the Hapke bidirectional reflection function are, most likely, physically irrelevant. However, this
result is not the only evidence that something may be wrong with the Hapke bidirectional reflection
function. We have also examined the Hapke reflection function vs rigorous numerical solutions of
the radiative transfer equation for independently scattering particles, in which case the radiative
transfer theory gives exact results. We have found that the use of the Hapke reflection function
to reconstruct the original asymmetry parameter can give significant errors. Specifically, whereas
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Fig. 14. As in Fig. 13, but for @y = 0.996.

the original strongly forward-scattering phase function used in numerically solving the radiative
transfer equation had an asymmetry parameter g = 0.82, the retrieved model asymmetry
parameter was gy = —0.4, corresponding to a moderately backscattering phase function. The
retrieved model asymmetry parameter is physically irrelevant and is an artifact of using several
unjustified approximations combined with the ill-conditionality of the inverse scattering problem.

The Hapke bidirectional reflection function and a number of similar approximate models (e.g.,
Ref. 67 and references therein) have been widely used to analyze photometric observations of the
Earth and planetary surfaces and planetary atmospheres and have been found to be able to fit the
data well with a small number of free model parameters. In this regard, these models may be
considered a useful interpolation tool (e.g., Helfenstein et al'). However, these models have not
been verified yet vs results of controlled laboratory experiments, when all physical parameters of
the scattering medium (i.e., particle size distribution, shape, refractive index, and filling factor) are
measured along with measuring the medium reflectance properties. It is important to note that the
Hapke theory does not even contain such a crucial physical parameter as refractive index, thus
making practically impossible its physical validation. So far, the Hapke bidirectional reflection
function has been compared with remote photometric observations and what can be called
“laboratory observations”. The latter means that only the reflectivity of a scattering medium is
measured in laboratory without explicitly specifying the principal physical parameters of the
scatterers.® Good fit of model computations to observational and laboratory data has usually been
considered an evidence of the adequacy of the Hapke reflection function. However, as demon-
strated above, the formal fit of model computations to observational data does not necessarily
mean that the values of the model parameters represent exact and physically relevant values of
specific physical properties of the scattering particles (cf. Refs. 68-70). To be relevant, a model of
light scattering by regolithic, soil, or snow particles must have a solid physical background and
be validated vs results of controlled laboratory experiments. Of course, real controlled laboratory
experiments may be replaced by controlled “theoretical” experiments, which means that a more
rigorous theory (e.g., the conventional radiative transfer theory for independent scatterers or
densely packed nonabsorbing or moderately absorbing particles and Monte Carlo ray-tracing for
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big, strongly absorbing particles) is used to produce benchmark numbers. Such a controlled
“theoretical” experiment performed in Section 3 shows that the Hapke reflection function can be
grossly inconsistent with rigorous numerical solutions of the radiative transfer equation.

Note added in proof—Our discussion would be incomplete without noting that in Ref. 49 rigorous numerical solutions of
the (vector) radiative transfer equation were successfully used to interpret polarimetric observations of the Martian surface.
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